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Abstract

Referential games offer a grounded learning environment for
neural agents, that accounts for the functional aspects of lan-
guage. However, they fail to account for another fundamen-
tal aspect of human language: Because languages are trans-
mitted from generation to generation, they have to be learn-
able by new language users, which makes them subject to
cultural evolution. Recent work has shown that incorporat-
ing cultural evolution in referential game results in consid-
erable improvements in the properties of the languages that
emerge in the game. In this work, we first substantiate this
claim with a different data set and a wider array of evaluation
metrics. Then, drawing inspiration from linguistic theories of
human language evolution, we consider a scenario in which
not only cultural but also genetic evolution is integrated. As
our core contribution, we introduce the Language Transmis-
sion Engine, in which cultural evolution of the language is
combined with genetic evolution of the agents’ architecture.
We show that this co-evolution scenario leads to across-the-
board improvements on all considered metrics. These results
stress that cultural evolution is important for language emer-
gence studies, but also the suitability of the architecture itself
should be considered.

Introduction
In the recent past, the computational study of language emer-
gence using referential games has received a new wave of
attention (Evtimova et al. 2018; Lazaridou, Peysakhovich,
and Baroni 2017; Mordatch and Abbeel 2018; Havrylov
and Titov 2017; Choi, Lazaridou, and de Freitas 2018;
Bouchacourt and Baroni 2019). In such games, motivated
by the functional aspects of language, two agents have to
develop a discrete communication protocol to talk about ob-
jects in an artificial, grounded environment. The recent wave
of such experiments shows that agents parametrised by neu-
ral networks can develop successful communication proto-
cols that allow them to complete their task. However, mul-
tiple recent studies have also shown that the emerged lan-
guages do not share even basic properties of human lan-
guage (e.g. Bouchacourt and Baroni, 2018).
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Studies concerning the emergence (or evolution) of hu-
man language suggest that, next to the functional aspect of
language, there is a second aspect important for the shape
of natural language: that it is subject to cultural evolution.
Unlike animal languages, which are taken to be mostly in-
nate, human languages must be learned by every individ-
ual (Pinker and Bloom 1990; Hurford 1998). This learn-
ing process takes place through cultural transmission of
the language by other individuals of the population. Since
these learners have to learn an infinite language from a finite
amount of examples, this creates a transmission bottleneck,
which is shaped by the learning biases of the members of the
population. If new members can infer a particular property
or feature from a limited sample of the language, it can sur-
vive, because it will be learned by the next generation. The
reverse is also true, where features of language that are not
learnable by new members will not continue to exist.

Referential games do not consider this cultural aspect
of language and as such are not concerned with the learn-
ability of languages. In two-player referential games, lan-
guages are not constrained to be learnable by new agents
and are thus not continually pressured to evolve regularities
or exhibit compositional structure. Instead, they can become
highly specific to certain inputs. In a recent study, Cogswell
et al., (2019) show that adding cultural evolution to a ref-
erential game significantly improves agents’ abilities to per-
form zero-shot generalisation, which they argue to require
a compositional understanding of the game. Here, we sub-
stantiate that claim, using a different grounded environment
and a much wider array of evaluation metrics, such as the
topographic similarity of the input and message space, the
speed of convergence and the number of unique messages
compared to the number of unique inputs.

As our core contribution, however, we observe that the
way that cultural transmission shapes languages depends not
only on the mere existence of a transmission bottleneck but
also on which features are learnable by new agents and can
thus pass this bottleneck. What languages are learnable by
an agent from limited exposure depends not on the setup or
language, but on the learning biases of the agent, which are
determined by its architecture. If an architecture does not
have the learning biases suitable for solving the task at hand



through communication, agents will – at best – converge to
a language that doesn’t allow effective communication or
– at worst – not converge to a culturally transmittable lan-
guage at all. Therefore, we argue that the cultural evolution
of the language should go alongside the genetic evolution of
the agents, and we study the co-evolution of language and
architecture in referential games. We confirm Cogswell et
al.’s results that the emerging languages benefit from includ-
ing cultural transmission as well as genetic evolution – also
when more informative metrics are taken into account – but
show that the best results are achieved when both types of
evolution are included and language and agents co-evolve.

Related Work
Language Emergence Games
Much work has been done on language emergence with
artificial agents, focusing in particular on the emerged
language’s structure, compositionality and morphosyntax
(Kirby and Hurford 2002). The first simulations dealt with
logic and symbolic representations (Kirby 2001; Chris-
tiansen and Kirby 2003), but with the advent of modern
deep learning methods and sequence-to-sequence models
(Sutskever, Vinyals, and Le 2014), there has been a renewed
interest in simulating the emergence of language with neural
network agents (Lazaridou, Peysakhovich, and Baroni 2017;
Havrylov and Titov 2017).

In the exploration of language emergence, different train-
ing approaches and tasks have been proposed. These tasks
are commonly set up in an end-to-end setting where rein-
forcement learning can be applied. A popular setup is the
two-player referential game, where one agent must commu-
nicate the information it has access to (typically an image)
and the other must pick it out of a line-up (Evtimova et
al. 2018; Lazaridou, Peysakhovich, and Baroni 2017). Mor-
datch and Abbeel (2018) and Choi, Lazaridou, and de Freitas
(2018) find that structure and compositionality can arise in
emerged languages in such setups; Kottur et al. (2017) show
that natural language does not arise naturally and has to be
incentivised by imposing specific restrictions on games and
agents.

Evolution of Language
The evolution of human language is a well-studied yet
poorly understood topic. One particular open question con-
cerns the relation between two different evolutionary pro-
cesses: genetic evolution of the agents in the population
and cultural evolution of the language itself (Fitch 2010;
Christiansen and Kirby 2003).

Cultural Evolution Cultural transmission is thought to
enforce structure and compression to languages: a language
must be learned and used by all individuals of the culture
in which it resides but at the same time be suitable for a
variety of tasks. Kirby et al. (2015) define those two pres-
sures as compressibility and expressivity and find that struc-
ture arises from the trade-off between these pressures in
generated languages. The importance of cultural evolution
for the emergence of structure is supported by a number

of artificial language learning studies (e.g. Saldana et al.,
2018) and computational studies using the Iterated Learn-
ing paradigm, in which agents learn a language by observ-
ing the output produced by another agent from the previ-
ous ‘generation’ (Kalish, Griffiths, and Lewandowsky 2007;
Kirby, Cornish, and Smith 2008; Kirby et al. 2015). An al-
ternative way of imposing cultural pressures on agents is by
simulating a large population of them and pairing agents
randomly to solve a communicative game (Cogswell et al.
2019). This approach is more naturally aligned with cultural
pressures in humans (see e.g. Wray and Grace, 2007) and is
the one we use in this paper.

Genetic Evolution There is much controversy about the
selection pressures, under which the fundamental traits
underlying the human ability to learn and use language
evolved. Yet, the fact that genetic evolution played an essen-
tial role in endowing humans with the capabilities to learn
and use language, is generally undebated. Pre-modern hu-
mans, for instance, could not speak or understand complex
structures (Fitch 2010).

Neural Architectural Search (NAS) can be used to sim-
ulate the genetic evolution of neural network agents. Un-
like many traditional evolutionary techniques which often
include parameter weights, NAS focuses the search on net-
work topology. Recent techniques such as ENAS (Efficient
Neural Architecture Search) and DARTS (Differentiable Ar-
chitecture Search) have approached NAS by smartly search-
ing through a constrained space of possible architectures
(Liu, Simonyan, and Yang 2018; Pham et al. 2018). In this
work, we will use the DARTS search space for an RNN cell,
which obtained state-of-the-art performance on benchmark
natural language tasks (Li and Talwalkar 2019). We explore
this topological space using a simple selection and mutation
mechanism which we further describe in the Approach sec-
tion.

Approach
Sender/Receiver communication
We study language emergence in a referential game inspired
by the signalling games proposed by Lewis (1969). In this
game, one agent (called the sender) observes an image and
generates a discrete message. The other agent, the receiver
of the message, uses the message to select the right image
from a set of images containing both the sender image and
several distractor images. Since the information shown to the
sender agent is crucial to the receiver’s success, this setup
urges the two agents to come up with a communication pro-
tocol that conveys the right information.

Formally, our referential game is similar to Havrylov and
Titov (2017):
1. The meaning space of the game consists of a collection D of K

images {d0, d1, ..., dK}, represented by z-dimensional feature
vectors.

2. In each round i of the game, a target item di is randomly sampled
from D, along with a set C of n distractor items.

3. The sender agent s of the game, parametrised by a neural net-
work, is given item di and generates a discrete message mi from



a vocabulary V . The message is capped to a max message length
of L.

4. The receiver agent r, also parametrised by a neural network, re-
ceives message mi and uses it to identify di in the union of di
and C.

We use feature vectors of size z=512 and n = 3 distractors.

Language Transmission Engine
We introduce both cultural and genetic evolution with the
Language Transmission Engine (LTE), which is depicted in
Figure 1.1 Similar to Cogswell et al. (2019), we create a pop-
ulation of communicating agents. At every training iteration,
two random agents are sampled to play the game, which
forces the agents to adopt a simpler language: to succeed
they must be able to communicate or understand all other
agents. In our setup, agents are either sender or receiver, they
do not switch roles during their lifetime.2

Figure 1: The Language Transmission Engine: Agent pairs
are randomly sampled from each population and trained.
After l training iterations, a portion α of the population is
culled and replaced according to a specified selection mech-
anism.

Cultural evolution To model cultural evolution in the
LTE, we periodically replace agents in the population
with newly initialised agents. Cultural evolution is im-
plicitly modelled in this setup, as new agents have to
learn to communicate with agents that already mas-
ter the task. Following Cogswell et al., we experiment
with three different methods to select the agents that
are replaced: randomly (no selection pressure), replacing
the oldest agents or replacing the agents with the low-
est fitness. We call these setups cogswell-random,
cogswell-age and cogswell-best, respectively.
Note that cogswell-best is slightly different in its im-
plementation than the originally proposed greedy sampling
approach but follows the same criteria of selecting agents to
replace base on a performance metric.

1We will make the code publicly available upon acceptance.
2We obtained similar results with symmetric agents, but do not

report them in this paper.

Genetic evolution To model genetic evolution, rather than
periodically replacing agents with randomly initialised new
agents, we instead mutate the most successful agents and
replace the worst agents with variations of the best agents.
Note that cultural evolution is still implicitly modelled in
this setup, as new agents still have to learn to communicate
with older agents. Therefore, we call this setup with the term
co-evolution.

Culling We refer to the selection process and subsequent
mutation or re-initialisation step as culling. In biology,
culling is the process of artificially removing organisms
from a group to promote certain characteristics, so, in this
case, culling consists of removing a subset of the worst
agents and replacing them with variations of the best ar-
chitecture. The proportion of agents from each population
selected to be mutated is determined by the culling rate α,
where α ∈ [0, 1). The culling interval l defines the number
of iterations between culling steps. A formalisation of the
LTE process can be found in the Supplemental Material.

Mutation Algorithm We draw mutations from the RNN
cell search space DARTS, defined by Liu, Simonyan, and
Yang (2018). This space includes recurrent cells with up
to N nodes, where each node All potential connections are
modulated by an activation function, which can be the iden-
tity function, Tanh, Sigmoid or ReLU. Following Liu, Si-
monyan, and Yang (2018) and Pham et al. (2018), we en-
hance each operation with a highway bypass (Zilly et al.
2016), and the average of all intermediate nodes is treated
as the cell output.

To sample the initial model, we sample a random cell with
a single node (N =1). As this node must necessarily be con-
nected to the input, the only variation stems from the possi-
ble activation functions applied to the output of n1, resulting
in four possible starting configurations. We set a node cap of
N =8. We mutate cells by randomly sampling an architec-
ture that is one edit step away from the previous architec-
ture. Edit steps are uniformly sampled from i) changing an
incoming connection, ii) changing an output operation or iii)
adding a new node. The mutation location is uniformly sam-
pled from all possible mutations.3

Fitness Measure
The fitness criterion that we use in both the
cogswell-best and co-evolution setup is based on
task performance. However, rather than considering agents’
performance right before the culling step, we consider the
age of the youngest agent in the population (defined in
terms of the number of batches that it was trained on) and
for every agent compute their performance up until when
they had that age. For any agent aj in population A this is
defined as:

fitness(aj) =
1

TA

TA∑
t=0

L(atj) (1)

3For a formal description of the mutation process, we refer the
reader to the Supplemental Material



where TA = mina∈A T (a) is the age T (a) of the youngest
agent in the population, and L(atj) is the loss of agent aj at
time step t. This fitness criterion is not biased towards older
agents, that have seen already more data and have simply
converged more. It is thus not only considering task per-
formance but also the speed at which this performance is
reached.

Experiments
We test the LTE on a compositionally defined image dataset,
using a range of different metrics.

Dataset
We consider a modified version of the SHAPES dataset (An-
dreas et al. 2015), which contains 30 by 30 pixel images of
2D shapes, that differ in colour, position and size. While ev-
ery image has a unique symbolic description – consisting of
the shape (circle, triangle, square), colour (red, green, blue)
and size (small, large) of the object and its horizontal and
vertical position in a 3x3 grid – one symbolic representation
maps to multiple images, that differ in terms of exact pixels
and object location. We use 80k, 8k, 40k images for train,
validation and test sets, respectively. Some example images
are depicted in Figure 2.

Figure 2: The modified Shapes task consists of showing an
image the sender, and then letting the receiver deduce from
the sender’s message which image out of the target and k
distractors is the correct one.

We pre-train a CNN feature extractor for the images in a
two-agent setting of the task (more details of the architec-
tures and training is provided in the Supplemental Material).

Architecture and Training
For our co-evolution experiments, we use the DARTS search
space as described above. For all cultural evolution ap-
proaches, we use an LSTM (Hochreiter and Schmidhuber
1997) for both the sender and receiver architecture (fur-
ther details are provided in the Supplemental Material). Un-
less otherwise specified, we use the same sizes and hyper-
parameters for all models. The sender and receiver models

have a hidden size of 64 for the recurrent layer and an em-
bedding layer of size 64. Further, we use a vocabulary size V
of 4, with an additional bound token serving as the indicator
for beginning and end-of-sequence. We limit the maximum
length of a sentence L to 5. Note that we obtain similar re-
sults with V = 25 and L = 10 but keep the communication
channel small for efficiency and interpretability purposes.

To train the agents, we use the hinge loss function pro-
posed by Havrylov and Titov (2017) and back-propagate
gradients through the discrete outputs of the sender (the mes-
sage) by using the Straight-Through (ST) Gumbel-Softmax
Estimator (Jang, Gu, and Poole 2017), using a fixed temper-
ature τ =1.2. We use the default Pytorch Adam optimiser
(Paszke et al. 2017; Kingma and Ba 2015) with a learning
rate of 0.001 and a batch-size of 1024, and reset the opti-
miser every iteration. Note that an iteration is equivalent to
a training batch shown to two randomly sampled agents.

We use a population size of 16 senders and 16 receivers.
The culling rate α is set to 0.25 or four agents, and we cull
(re-initialise or mutate) every l=5k iterations (batch). We
run the experiments for a total of I =500k iterations, and
evaluate the populations before each culling step.

Evaluation
We use a range of metrics to evaluate both the population of
agents and the emerged languages.

Jaccard Similarity To measure the consistency of the
emerged languages throughout the population, we use Jac-
card Similarity, which is defined as the ratio between the
size of the intersection and the union of two sets. We sam-
ple 200 messages per input image for each possible sender-
receiver pair and average the Jaccard Similarity of the sam-
ples over the population.

Proportion of Unique Matches We compute the similar-
ity of messages that different agents emit for the same input
by looking at all possible (sender, message) pairs for one in-
put and assess whether they are the same. If all agents emit
the same message for the same input, this metric is 1.

Number of Unique Messages We compute the average
number of unique messages generated by each sender in
the population. An intuitive reference point for this metric
is the number of images with distinct symbolic representa-
tions. If agents generate more messages than expected by
this reference point, this demonstrates that they use multi-
ple messages for the images that are – from a task perspec-
tive – identical. A smaller number of unique messages, on
the other hand, indicates that the agent is using a simpler
language which is underspecified compared to the symbolic
description of the image.

Topographic Similarity Topographic similarity, used in
a similar context by Lazaridou et al. (2018), represents the
similarity between the meaning space (defined by the sym-
bolic representations) and the signal space (the messages
sent by an agent). It is defined as the correlation between the
distances between pairs in meaning space and the distances
between the corresponding messages in the signal space. We
compute the topographic similarity for an agent by sampling



5,000 pairs of symbolic inputs and corresponding messages
and compute the Pearson’s ρ correlation between the cosine
similarity of the one-hot encoded symbolic input pairs and
the cosine similarity of the one-hot encoded message pairs.

Average Population Convergence To quantify the speed
of learning of the agents in the population, we estimate the
average population convergence. For each agent, at each
point in time, this is defined as the agent’s average perfor-
mance from the time it was born until it had the age of the
current youngest agent in the population (analogous to the
fitness criterion defined in Section ). To get the average pop-
ulation convergence, we take we average those values for all
agents in the population.

Average Agent Entropy We compute the average cer-
tainty of sender agents in their generation process by com-
puting and averaging their entropy during generation.

Results
We now present a detailed comparison of our cultural and
co-evolution setups. For each approach, we average over
four random seeds and display the standard deviation er-
ror in plots. We consider the development of all previ-
ously outlined metrics over time. We then test the most suc-
cessful converged languages and architectures in a single
sender-receiver setup, to assess the impact of cultural and
genetic evolution more independently. In these experiments,
we compare also directly to a single sender-receiver base-
line, which is impossible for most of the metrics we con-
sider in this paper. Finally, we briefly consider the emerged
architectures from a qualitative perspective.

Task performance
As can be seen in Figure 3, in all setups, populations
converge to an almost perfect solution to the game. The
cogswell-age approach slightly outperforms the other
approaches, with an accuracy that surpasses the 95% accu-
racy mark. Note that, due to the ever-changing population,
the accuracy at any point in time is an average of both ‘chil-
dren’ and ‘adults’, that communicate with different members
of the population.

Figure 3: Average population accuracy of final populations.

Agent behaviour
To assess the behaviour of the agents over time, we monitor
their average message entropy convergence speed. As can be

seen in Figure 4, the co-evolution setup results in the
lowest average entropy scores, the messages that they assign
to one particular image will thus have lower variation than in
the other setups. Of the cultural evolution setups, the lowest
entropy score is achieved in the cogswell-best setup.

Figure 4: Average Agent Entropy over time.

Figure 5 shows the average population convergence over
time. We again observe a clear difference between cul-
tural evolution only and co-evolution, with an immediately
much lower convergence time for co-evolution and a slightly
downward trending curve.

Figure 5: Average convergence for all cultural transmission
modes and evolution.

Language Analysis
To check the consistencies of languages within a population,
we compare the Jaccard Similarity and the Average Propor-
tion of Unique Matches, which we plot in Figure 6. This
shows that, compared to cultural evolution only, not only
are the messages in co-evolution more similar across agents
(higher Jaccard Similarity), but also that agents are consider-
ably more aligned for the same inputs (less unique matches).

Performing a quantitative analysis of the structure and
compositionality of a language is hard as current metrics fail
to capture possible nuances and only compare solutions to
our human interpretation of the input space. Nevertheless, to



Figure 6: Average Jaccard Similarity and proportion of mes-
sage matches for all cultural transmission modes and evolu-
tion

Figure 7: Average Number of Unique Messages and To-
pographic Similarity for all cultural evolution modes and
co-evolution. For comparison, we also plot the number of
unique messages for a symbolic solution that fully encodes
all relevant features of the image (since we have three possi-
ble shapes and colours, two possible sizes, and a 3 × 3 grid
of possible positions, this symbolic reference solution has
3× 3× 2× 9 = 162 distinct messages.

assess the level of structure of the emerged languages, we
plot the Average Number of Unique Messages generated by
all senders and the average Topographic Similarity (Figure
7). These two metrics allow us to analyse the level of com-
pression that agents have when expressing the input space,
and how far their expressions are to the human level encod-
ing. We show that the co-evolution condition again outper-
forms all cultural only conditions, with a simpler language
(the number of the unique messages closer to the symbolic
reference point) that is structurally more similar to the sym-
bolic representation of the input (higher Topographical Sim-
ilarity).

Architecture Analysis
In Figure 8 we show the co-evolution of an agent and a sam-
ple of its language during three selected iterations in the
co-evolution setup. Strikingly, the best sender architecture
does not evolve from its original form, which could point to-
wards the limitations of our search strategy and space. The

receiver, on the contrary, goes through quite some evolution
steps and converges into a significantly more complex archi-
tecture than its original form. While this is a single instance
of the evolution mechanism, we find the preference for sim-
pler senders and complex receivers consistent for different
seeds. The total number of receiver architectures considered
during training was 264, but only 50 for the sender architec-
tures. Throughout training, twenty different sender architec-
tures were selected as the best, whereas only five were ever
selected for the sender. The wider exploration of the search
space by receivers suggests that more architectural complex-
ity is required for this role. We will leave a more detailed
analysis of the evolved architectures for future work.

Qualitatively, we observe a unification of the language
along with the architecture evolution (see Figure 8), a result
which is quantitatively supported by Figure 7. The popula-
tion of senders starts with eleven different unique messages
and ends with only two to describe the same input image.

Measuring the Impact of the LTE
With a series of experiments we test the a priori suitability
of the evolved languages and agents for the task at hand,
by monitoring the accuracy of new agents that are paired
with converged agents and trained from scratch. This allows
us also to compare with the baseline two-player setup in
which nor cultural nor genetic evolution plays a role. We fo-
cus, in particular, on training receivers with a frozen sender
from different setups, which allows us to assess 1) whether
cultural evolution made languages evolve to be more easily
picked up by new agents and 2) whether the genetic evolu-
tion made architectures converge more quickly when faced
with this task.

We compare the accuracy development of:
• An LSTM receiver trained with a frozen sender taken

from cogswell-best.
• An evolved receiver trained with a frozen evolved sender

taken from co-evolution.
For both these experiments, we compare with two base-

lines:
• The performance of a receiver agent trained from

scratch along with a receiver agent that has either the
cogswell architecture or the evolved co architecture
(cogswell-baseline and co-baseline, respec-
tively).

• The performance of an agent trained with an agent
that is pretrained in the single agent setup, with ei-
ther the cogswell architecture or an evolved ar-
chitecture (cogswell-baseline-pretrained and
co-baseline-pretrained).
Each experiment is ran 10 times, keeping the same

frozen agent. The results confirm cultural evolution con-
tributes to the learnability and suitability of emerging lan-
guages: the cogswell-best accuracy (green line) con-
verges substantially quicker and to higher level than the
cogswell-baseline-pretrained accuracy (orange
line). Selective pressure on the language appears to be im-
portant: The resulting languages are easier to learn in the



Figure 8: Evolution of the best sender and receiver architecture according to convergence, and the evolution of the population’s
message description of the same input through iterations. The bold messages represent the message outputted by the best sender
whose architecture is pictured above. The count of each message represents the number of agents in the population which uttered
this exact sequence.

Figure 9: Receiver accuracies trained with different types of
frozen senders.

cogswell-best setup.4 The results also show that the
agents benefit from the genetic evolution: the best accura-
cies are achieved in the co-evolution setup (red line). The
difference between the cogswell-baseline (blue) and
the co-baseline (brown) further shows that even if the
evolved architectures are trained from scratch, they perform
much better than a baseline model trained from scratch. The
difference between the co-baseline-pretrained
(only genetic evolution, purple line) and the co-evolution
of agents and language line (red line) illustrates that ge-
netic evolution alone is not enough: while a new evolved re-
ceiver certainly benefits from learning from a (from scratch)
pretrained evolved sender, without the cultural transmission
pressure, it’s performance is still substantially below a re-
ceiver that learns from an evolved sender whose language
was evolved as well.

4cogswell-age and cogswell-random are omitted for
clarity.

Conclusion

We explored the impact of cultural and genetic evolution on
the languages emerging in multi-player referential games.
We first extend the exploratory work of Cogswell et al.
(2019) on cultural evolution in referential games. Using a
different grounded environment and a wider array of eval-
uation metrics, we confirm their results that cultural evolu-
tion improves the quality of the emerged languages and pop-
ulation dynamics. Then, we consider a scenario in which
not only cultural but also genetic evolution is integrated.
to this end, we introduce the Language Transmission En-
gine (LTE) that allows to combine cultural evolution of the
language with genetic evolution of the agents’ architecture.
We show that this co-evolution scenario leads to across-the-
board improvements on all considered metrics. To compare
the emerged languages and agents with a baseline without
cultural and genetic evolution, we cross-pair senders and
receivers trained in the LTE with baseline senders and re-
ceivers. These experiments show that both cultural and ge-
netic evolution significantly improve the learning curves of
the agents, and also in this case co-evolution leads to the best
results. While we conduct our tests with asymmetric agents
and a small vocabulary size, we confirm that these results
hold also when symmetric agents or agents with more ex-
pressive power are considered.

Our results stress that cultural evolution is important for
language emergence studies, but also that previous research
may have underestimated the impact of the architectural
choices on the outcomes of language emergence experi-
ments. In future research, we would like to apply the Lan-
guage Transmission Engine on new, more complex tasks and
investigate more advanced techniques for genetic evolution
of the architectures.
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Supplemental Material
Language Transmission Engine
We formalise our Language Transmission process in the
pseudo code shown in Algorithm 1. We select hyper-
parameters l as the number of iterations or batches shown
between culling steps, and I as the total number of itera-
tions.

Algorithm 1 Language Transmission Engine

S ← {s0, s1..., sN}
R← {r0, r1..., rN}
i← 1
while i ≤ I do

for batch b in D do
Sample ŝ from S
Sample r̂ from R
train(ŝ, r̂, b)
if i mod l = 0 then

cull(S,R)
end if
i← i+ 1

end for
end while

Mutation Algorithms Pseudo-code

Algorithm 2 Genotype-level Mutation

procedure mg(genotype)
g ← copy(genotype)
a← U(1, 3)
n← U(1, len(g))
if a = 1 then

p← U [ReLU, I, tanh, σ]
n.activation← p

end if
if a = 2 then

r ← U(1, n)
n.connection← r

end if
if a = 3 then

n′ ← new node()
p← U [ReLU, I, tanh, σ]
r ← U(1, len(g))
n′.activation← p
n′.connection← r
g.append(n′)

end if
return g

end procedure

The genotype mutation is described in pseudo-code by al-
gorithm 2, and takes as input a genotype containing nodes
describing the cell. The genotype is mutated by either chang-
ing the input connection or primitive (output activation func-
tion) for a randomly sampled node n, or adding a new node

altogether. See section for explanations on the workings of
the DARTS cell structure.

Algorithm 3 Population-level Mutation

procedure mutate(P)
p′ ← argminconvergence(P )
p← π(P )
for pi in p do

pi.genotype←mg(p′.genotype)
end for

end procedure

In order to mutate a population P using π as a replace-
ment policy, we use the process outlined in algorithm 3.

Agent Architecture
Sender Architecture The sender architecture comprises
of a linear layer input mapping the input feature size (512)
to the hidden size. The image feature vector is therefore
mapped to the same dimension as the RNN layer, where it is
used as the initial hidden state. When training, for each step
of the sender RNN we apply the cell and use the straight-
through Gumbel-Softmax trick to be able back-propagate
gradients through the discrete message output. During evalu-
ation however, we sample the categorical distribution at each
step to produce each token in the sentence.

Receiver Architecture The receiver architecture is sim-
pler and takes as an input the message outputted by the
sender and outputs a vector of input feature size (512). A
single embedding matrix is used to encode the sender’s mes-
sage. During training the message is linearly transformed us-
ing the embedding matrix, while during the evaluation pass
the discrete message outputs of the sender are used to map
to the specific embedding dimensions. The embedded mes-
sage is then passed to the RNN layer, and the final state of
the RNN is linearly mapped back to the feature size. Doing
so allows us to obtain a prediction for each image feature
(distractors and true image), by comparing the alignment be-
tween the receiver output and the respective feature vectors.

Feature Extraction
In order to obtain image features, we pre-trained a convolu-
tional model on the task using the raw image as input. Due to
the input size requirements of the convolutional model, we
resize the images linearly to be 128 by 128 (height, width)
by 3 (RGB channels). We used early stopping conditions on
the validation accuracy, an embedding size of 256, and hid-
den size of 512. The two agents are otherwise trained with
the same parameters as other experiments: vocabulary size
and max sentence length of 5, Adam optimiser with learn-
ing rate of 0.001.

For the visual module itself, we used a similar architec-
ture to that in Choi, Lazaridou, and de Freitas (2018) albeit
smaller. We used a five-layer convolution network with 20
filters, and a kernel size and stride of 3 for all layers. For
every convolutional layer, ReLU activation was applied on



the output, after a Batch normalization step with no bias pa-
rameter. The linear layer which followed the convolutional
layers had output dimensions of 512 and a ReLU activation
function. This allows us to obtain image features of size 512,
which we then used for all experiments.


