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ABSTRACT
In this paper we propose using the Positional Attention mechanism
in an Attentive Language Model architecture. We evaluate it com-
pared to an LSTM baseline and standard attention, and find that it
surpasses standard attention on both validation and test perplexity
on both the Penn Treebank and Wikitext-02 datasets while still
using less parameters. Using the attention distribution vectors we
are able to analyze the differences between the two mechanism and
offer insight into the potential benefits of positional attention.

1 INTRODUCTION
Language modelling (LM) is traditionally framed as the task of
predicting a word given the previously occurring sequence of words
and encompasses the understanding of language by a model. LM
is often used to pre-train embeddings which serve as the base
of any NLP tasks. Many recent papers have shown that state of
the art results can be obtained on tasks such as Neural Machine
Translation, Sentiment Classification or Question Answering by
using pre-trained descriptive embeddings such as BERT (Devlin et
al., 2018) or ELMo (Peters et al. 2018) [6] [12]. Since embeddings are
trained using LM, any successful language model has the potential
to bring immediate gains to a slew of other problems.

Our attention mechanism is done by using a separate recurrent
neural network block referred to as a position generator and basic
building blocks to identify positions to attend to in the sequence
(see section 3.1.1). A Gaussian probability density function is used
to fuzzy the attention and make it more human-like where humans
focus on single words at a time but can still perceive surrounding
words due to the eccentricity effect (Carrasco et al., 1995) [3]. Un-
like the traditional attention mechanism, we inject the network
with positioning information as it is reading a sequence. While
this is also done in the transformer architecture (Vaswani et al.,
2017) using positional embeddings, positional attention differs in
its implementation and can be thought as the specialization of an
attention head towards position rather than content [16].

Positional attention focuses on the position of the word relative
to the sequence rather than content. This has been shown by Dubois
et al. (2019, unpublished) to improve the extrapolation capabilities
and sample efficiency of a model on the lookup table dataset. With
a specialized position component, the model is able to better and
more quickly generalize to lookup sequences of lengths which it
has never seen before.

LM requires an understanding of the implicit connections be-
tween words in a sequence in order to predict the next word more
accurately. When understanding text, one must not only base their
understanding on the content or the meaning of the words, but
also the order in which they appear (position). Thus, injecting the
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network with the knowledge of the word positions and letting it
learn how the position of words impact the occurrence of following
word should translate to better performance.

2 RELATEDWORK
Recurrent neural networks due to their sequential structure have
long history of been used for the task Language Modelling. Using
a multi-layer Long Short-Term Memory (LSTM) network, an em-
bedding layer, an output (decoding) layer and some training tricks,
Merity et al. has shown that one is able to approach state of the art
perplexity on the major LM datasets [10].

However, modern RNNs still fail to explicitly reason over the re-
lations between tokens and their underlying structure (Cheng et al,
2016) [4]. Additionally, if the sequence is long, then the underlying
Markov property of the RNN updates fails since the current state
might have trouble representing all the tokens it has previously
seen [4]. Zhang et al. also notes that modern LSTM use gating
mechanism in order to control the influence of each token on the
final representation, but those are not conditioned on the entire
sequence [17]. This can lead the LSTM to misrepresent or incom-
pletely represent an encoded token, and fail to model the position
of entities in a sequence [17]. The outlined limitations of RNNs
motivate our choice of testing positional attention in a language
model setting.

The modern attention mechanism for language was originally
proposed by Badhanau et. al. in 2014 as a mechanism for allowing
the model to focus on separate parts of the input for translation
depending on the time step [1]. Since then, attention has been
widely adopted as a technique for improving the performance of
any Sequence-to-Sequence or Sequence-to-One models.

Attention can be tagged on top of recurrent neural network
architectures by allowing the decoder to attend to separate parts of
the encoded states ht . Typically, this is done by first computing a
score for each previous time steps (queries) and comparing each to
the current state (key). This score can simply be the dot product, or
it can be computed using more complex methods such as an MLP.
The scores are then soft-maxed or normalized:

ai =
exp(score(hi ,ht ))∑t−1
j=1 exp(score(hj ,ht ))

(1)

The context vector at time step t can then be found by summing all
previous states hi with their attention score ai :

ct =
t−1∑
i=1

aihi (2)

Using a context vector partially solves the decoder-encoder bot-
tleneck caused by passing a single final encoded hidden state to
a decoder. Instead of solely using encoded state ht to decode at
time step t , the decoder is also able to use ct which is based on all
hidden states until ht−1. This context vector encodes information
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the network found relevant for the current state and allows the
previously sequential recurrent network to model relations and
structures between tokens [4].

In 2017, Vaswani et al. proposed the transformer architecture
which effectively replaced the need for a recurrent component and
instead uses self-attention, batch-normalization and fully connected
feed-forward layers to obtain state of the art results in machine
translation [16]. In the transformer architecture the key, value and
query components are all generated from the same sequence (self-
attention):

Attention(K ,V ,Q) = so f tmax(
QK⊺
√
n

)V (3)

It also makes use multi-head attention, which can be seen as the
concatenation of multiple attentions in parallel.

In order to understand the current position of the token it is
encoding, the transformer architecture uses absolute positional
embeddings that are generated using a sinusoidal function and
injected along with the input embeddings [16]. This absolute po-
sitioning can be a limitation when dealing with text data, as for
instance the negation ’not’ negates the phrase to the right of it, and
regardless of the specific or absolute position. These structural and
relative interactions occur often in text and explain why alternate
positioning methods might be beneficial [2].

Shaw et al. expands the transformer architecture by adding a
special relative position encoding instead of the absolute originally
proposed [15]. This uses the representations of relative positions
or distance between sequence elements in the self attention step
to obtain a better BLEU score than the original architecture [15].
Further improvements to the transformer’s positioning were pro-
posed recently in the Transformer-XL paper (Dai et. al 2019), where
the authors introduce a new relative positioning mechanism that
separate content specific keys and the position keys in the self
attention score [5]. The Transformer-XL is also able the cache the
hidden state sequence computed for the previous segment or batch
so that it can be used as an extended context [5]. This allows it to
outperform the current state of the art in Language Modelling on
the Penn-Tree Bank, WikiText-103 and enwiki8 corpora.

Bilan et al. also showed that relative positioning can be applied
in combination with a self-attention layer on the TACRED (Entitity
Extraction) dataset to improve performance with respect to the state
of the art [2]. Their approach uses an additional position-aware
attention layer that takes into account positions of the query and the
object in the sequence [2]. However, unlike positional attention, this
approach enforces relative positioning by considering all pairwise
interactions in the sequence.

A neural networkwhich is able to generalize across tasks is called
a meta-learner. In 2018, Mishra et. al [11] proposed the meta-learner
architecture called SNAIL which combines temporal convolution
layers with soft attention in order to design an architecture that can
generalizes to a variety of tasks. This hand-crafted meta-learner
was able to beat SOTA on a variety of tasks, by simply having a
well designed generalizable architecture. The exploration of posi-
tional attention in Language Modelling is a first step in seeing if
similarly it can become a meta-learner component. It could then
added to an existing network in order to endow it with positional
understanding.

Figure 1: Architecture of the Attentive Language model pro-
posed by Salton et al. [14]. In order to predict word w4, the
previous encoded steps of all previously seen words are at-
tended onto using a self-attention mechanism. This consti-
tutes the context vector, which is then concatenated to the
encoded state h3 of word w3 (last encoded state). Softmax
is applied to find a probability distribution over vocabulary
size and predictw4.

The first Attention-based RNN LanguageModel was proposed by
Mei et al. (2016) [9]. It was evaluated on a dialogue task and dynam-
ically increased the attention scope along with the conversation.
They showed that his allowed the model to outperform more com-
plex models by allowing for flexible, long-distance memory. Salton
et al. proposed a similar Attentive Language Model and tested it on
the task of Language Modelling specifically [14]. They found that it
was able to achieve perplexities of 70.1 on the PTB dataset (close to
SOTA at the time of publication) with significantly less parameters
than the best models [14]. The attentive model proposed by Salton
is the one that we have decided to modify in order to switch out
standard attention with positional attention.

3 METHOD
3.1 Model
As can be seen in Figure 1, designing an attentive language model
essentially consists of adding an attention layer on top of the RNN
encoder to find a context vector describing the time steps 1 to t − 1.
This context vector is then concatenated with the encoded ht and
used to output a prediction for the next word in the sequence. In
practice the concatenated vector is passed through a concatenation
layer to reduce the dimensions back to the original embedding
dimensions such that the weights between the embedding layer
and output layer are tied. This is a language modelling technique
suggested by Press and Wolf (2016) and Inan et al. (2016) [13] [7].
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It is important to note that unlike a traditional attention layer
which has access to all hidden states of the encoder, this model
cannot attend on the encoded future. This means that the attention
’memory’ is dynamic and grows with the sequence. When predict-
ing word t + 1, the model is only allowed to attend at the encoded
words up to t − 1. If we allowed the network to attend to future
states then it would be trivial for it to always attend to the next
word and obtain a perfect prediction scheme.

Additionally in our implementation of both the standard and
positional attention, self-attention is done on the hidden states in
the memory. Therefore the h3 from the RNN to the memory is not
used as the single key for the current context vector. The attention
key, query, and values are all found using the states in memory at
that time step. This was done because Salton et al. showed that the
model performed slightly better using self-attention on the memory
rather than using the hidden state h3 as a key [14].

For the standard attention mechanism we use equations 1 and 2.
And since we are doing self attention, we can calculate the score
using the following:

score(hi ) =W2 ⊙ tanh(W1hi ) (4)

WhereW1 andW2 are both learnable parameters (linear layers) of
dimensions d ×d and d × 1 respectively if d is the hidden dimension
of the RNN layer, and ⊙ represents the dot product.

3.1.1 Positional Attention. To implement the positional attention
we first run the encoded hidden states through a positioning gener-
ator which is a smaller RNN layer with hidden dimension d̃ , and is
used to obtain compressed encoding of the states:

h̃ = RNNpos_gen(h) (5)

Similarly the original positional attention, we use three building
blocks, namely the previous µ step (initialized to 0 at step 0), the
length of the interval of one step normalized to 1, and the current
position in the sequence. Thus we can define our building block
matrix as bt :

bt =
[
µt−1

1
N

t
N
]

(6)

Where N is the total length of the sentence. We can then find µt
and σt :

µ_weiдhtst = ReLU (Wµh̃) (7)

µt =max(µ_weiдhtst ⊙ bt ,
t

N
) (8)

σt = siдmoid(Wσ h̃) (9)

WhereWµ andWσ are learnable parameters of dimensions d̃ ×3
and d̃ × 1 respectively. We clamp µt between 0 and t

N using a ReLU
activation function and max. This is done in order to prevent the
attention from ’looking’ forward in the sentence, since position
in whole sentence is represented in percentile (0, 1). The sigmoid
activation is used to generate the σ in order to obtain a number in
the interval of (0, 1), while trying to avoid the edge cases.

We then use a Gaussian probability density function to obtain
an attention score γ for each encoded hidden state hi that occurred
before time step t :

(a) Vanilla RNNWord accuracy

(b) Positional RNNWord accuracy

Figure 2: Word (token) accuracy of running vanilla RNN
vs. RNN with Positional Attention on the extended table
lookup dataset

γit = exp(
(pi − µt )

2

2σ 2
t + ϵ

) (10)

γit =
γit∑t−1
i=1 γit

(11)

Here pi encodes the percentile positional description at position i
with respect to the full sentence:

pi =
i

N
(12)

Also note that in equation 10 we use an ϵ term in order to prevent
a potential divide by zero, which can happen if σ approaches zero.
We can then use our attention score γit to generate the positional
context vector similarly to equation 2:

ct =
t−1∑
i=1

γithi (13)

All the coding implementation of the equations described above
can be found in the project’s public repository1 using the pytorch
framework.
1https://github.com/gautierdag/pytorch-attentive-lm

https://github.com/gautierdag/pytorch-attentive-lm
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4 EXPERIMENTS
4.1 Lookup Table Task
The first step of this experiment consisted of replicating the effects
of positional attention in the original lookup table task. The lookup
table composition task was proposed by Liska et al. in order to test
compositional behavior and demonstrate that a standard RNN could
theoretically learn to behave compositionally [8]. This is done by
showing lookup tables as atomic units in training along with some
compositions, and holding out other compositions. A successful
model then has to extrapolate the pattern of the composition from
its atomic parts, and learn to replicate it to unseen combinations.
The task was extended by Dubois et al. to include longer sequences
and different interactions between lookup tables.

Figure 2 shows the results of running the positional attention on
the extended lookup task in comparison to using a simple RNN. It
shows that the positional attentionmodel is able to better generalize
to longer unseen sequences and obtain a degree of compositionality
that the baseline model is unable to achieve. This indicates that the
mechanism of positional attention

4.2 Language Modelling
Pre-processing was done according to Salton et al. [14] so as to
replicate the Attentive RNN. Unlike the traditional batching applied
to the LM corpora, in this case, it is split such that every sentence
is its own training example. We select a max sentence length of 35,
clipping sentences which are longer, and padding shorter sentences.
We use a fix vocabulary size similar to what is done in the literature:
10,000 + 1 (padding) token for PTB and 33,278 + 1 (padding) for
WikiText-02. The pre-processing of WikiText is done using the nltk
punkt python package, and we split each line at every sentence
ending order to obtain one per line.

A key difference with state of the art Language Models and
the attentive architecture, is that we are not propagating encoded
hidden states beyond a batch. This means that our network is sus-
ceptible to the cold start problem since we reset its hidden state at
every new batch. This was done because of the dynamic nature of
the attention span. Dividing the document cleanly into sentences
allows us to control the attention span to within a sentence and
not deal with overflowing the attention over other older sentences.
Furthermore, increasing the attention window would also require
additional computational resources and could always be expanded
ulteriorly.

The baseline model used was proposed by Merity et al. and
consists of a three-layer LSTM LM. For the purpose of this paper, it
was re-implemented and tested using our new dataset split. It has
an embedding dimension of 400 and LSTM hidden size of 400. As
for all three models, the weights between the embedding layer and
final output layer are tied according to Press and Wolf and Inan et
al. [13] [7]. As suggested by Merity et al. a batch size of 20 is used.
The parameters of this model remain the same for both datasets.

Our implementation of the Attentive LM proposed by Salton et.
al, differs slightly from the original parameters. We use an embed-
ding size of 400 and two-layer LSTM hidden size of 400 on both
the PTB and the the Wikitext-02 datasets. This helps us compare
models with the same number of parameters, but also unlike the
original authors we obtained better perplexity scores using these

(a) Standard Attention

(b) Positional Attention

Figure 3: Comparison of the attention distribution for the
same sentence using the standard Attention vs proposed Po-
sitional Attention. The words in the X-axis are the inputs at
each time step and the words in the Y-axis are the targets

parameters. Salton et al. reports using embedding and hidden sizes
of 650 on PTB and 1,000 on Wikitext-02, yet we found that the
model suffered from high over-fitting with this many parameters.

Our Positional Attentive LM uses an embedding size of 400 and
two-layer LSTM hidden size of 400 on both PTB and Wikitext-
02. We use a single-layer LSTM with a hidden size of 20 for the
positioning generator.

For all models SGD was used with an aggressive initial learning
rate of 30 and a learning rate plateau scheduler which decrease the
learning rate by a factor of 0.5 if the validation loss does not decrease
within 5 epochs. The norm of the gradients are clipped at 0.25.
We initialize all the weight matrices of the network uniformly in
range [−0.1, 0.1]. A Dropout of 50% is applied to the non-recurrent
connections, and a dropout of 20% to the recurrent connections.
Using early stopping with a patience of 10 epochs, we return the
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Model Params Valid. Set Test Set

LSTM Baseline (Merity et al., 2017) [10] 7.86M 66.77 64.96
Attentive Language Model (Salton et al., 2017) [14] 7.06M 79.09 76.56
Positional Attentive Language Model (ours) 6.9M 72.69 70.92

Table 1: Perplexity results for each implemented model tested on the PTB dataset

Model Params Valid. Set Test Set

LSTM Baseline (Merity et al., 2017)[10] 7.86M 72.43 68.50
Attentive Language Model (Salton et al., 2017) [14] 7.06M 78.43 74.37
Positional Attentive Language Model (ours) 6.9M 74.39 70.73

Table 2: Perplexity results for each implemented model tested on the Wikitext-02 dataset

model with the best validation loss and evaluate on the test set. We
set the max epochs to be 500 for the PTB dataset and 750 for the
Wikitext-02 dataset. Cross-entropy loss over the words is used, and
we calculate perplexity by taking its exponent.

4.2.1 Penn Tree-Bank. We show the results for the PTB dataset in
table 1. All three models shown in the table were implemented and
ran using the same pre-processing and sentence split.

We find that the baseline LSTM model was the best at predicting
the next word in a sequence, with a validation perplexity of 66.77,
and a test perplexity of 64.96. However our positional model showed
an improvement over the Attentive LM with a validation perplexity
of 72.69 and test perplexity of 70.92. The Attentive LM obtained
the worse results with a validation perplexity of 81.72 and test
perplexity of 79.86.

4.2.2 WikiText-02. We show the results for theWikitext-02 dataset
in table 2. Again, we find that the baseline LSTM model performed
best, with a validation perplexity of 72.43, and a test perplexity
of 68.50. The Attentive LM, again obtained the worst results with
a validation perplexity of 81.02 and test perplexity of 76.62. Our
positional model obtained a validation perplexity of 74.39 and test
perplexity of 70.73.

Figure 3 shows the result of plotting the attention distribution
vectors for both the Attentive and Positional Attentive models
trained on the Wikitext dataset. We can see from this plot the differ-
ence in attending based on content rather than using our position
generator and attending using the position attention mechanism.

The content attention will focus on the same words over a se-
quence, deemed on the content of those and how relevant they
are. Standard or content-only attention will thus not focus on filler
words like ’the’ and ’which’, as can be seen in figure 3. This can be
an advantage for tasks in which a stronger signal of what was in the
context is needed, since this attention focuses on a few key encoded
states. On the other hand, the positional attention model distributes
the attention with a bias towards most recently seen words. In doing
so it almost creates a context window of sorts around the current
word, and can be seen as augmenting the information from the
base RNN layer with an additional focus on the immediate previous
steps.

Both attention types however fail to outperform the baseline
LSTMmodel in both datasets. While the Positional Attention model
does have the least number of trainable parameters it is not neces-
sarily faster due to the dynamic attention that must be performed
on top of the RNN layer.

5 CONCLUSION
In this paper we have shown the effects of running positional at-
tention in comparison to standard attention on a LM task. This
is the first real application of the positional attention mechanism
and showed that there are tasks in which it promises to be more
successful than the standard attention mechanism.

Comparing both attentions in particular proved interesting, as
we see the advantage to using a model which can attend to specific
regions in the input using positions. The task of predicting next
word however could have impacted heavily the positional attention,
as it focused on the narrow context preceding each word it would
predict. This suggest that positional attention would have been
unable to attend to distant but relevant words in the context, as in
practice the best next word to choose is often a result of a few words
preceding it. The issue with long term dependencies also plagues
traditional LSTM, and is often solved using traditional attention.
Thus, it remains to be seen what effect could mixing both attention
mechanisms bring to Language Modelling.

Additionally only the self-attention method was tested as it
showed the most promise in Salton et. al [14]. Using the current
encoded hidden state ht as a key to the queries (all previous hidden
states), could potentially help in promoting a more diverse attention
span in the positional mechanism since it would indicate to the
attention the information contained at step t .

Finally more fine-tuning could be done on the attentive mod-
els in order to bring their scores to similar levels as the baseline.
Minimal tuning was unfortunately done due to computation and
time constraints. The baseline however uses parameters which have
been very fine tuned by Merity et. al and therefore this could have
skewed the results in its favor [10].

These results conclude this independent research project. Beyond
this paper, analysis, re-implementations of the baseline models
in the pytorch framework, and the development of a Positional
Attentive RNN-LM, I also worked on improving the ILLC’s Seq2Seq
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(a) Standard Attention Sentence 1 (b) Standard Attention Sentence 2

(c) Positional Attention Sentence 1 (d) Standard Attention Sentence 2

Figure 4: Extra Comparisons of the attention distribution for the same sentence using the standard Attention vs proposed
Positional Attention. Again we see that content attention seems to completely ignore filler words and instead focus on the key
words in the sequence like ’woman’ in this example. On the other hand the positional attention focuses its attention to the
few last states of a sequence. in this manner it helps the RNN gets extra information about the most recent states previous to
state t .

machine library. In my pull requests to the library, I implemented
callbacks and a default language model, as well as maintained the
library and upgraded it from pytorch 0.4 to pytorch 1.0.0. Thank you
to my supervisor Elia Bruni for advising and encouraging me on
this project, and to Yann Dubois for deepening my understanding
of attention mechanisms.
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