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Abstract
In this work we address the issue of Automated
Essay Scoring on the Automated Student Assess-
ment Price (ASAP) dataset. We approached this
task by building around variants of LSTM mod-
els. To represent the long sequences of text in
essays, we considered different ways to gener-
ate meaningful embeddings. First, we consider
a commonly used approach, consisting of fine-
tuning Score-Specific Word Embeddings (SSWE).
We then switch to ELMo (Embeddings from Lan-
guage Models), a recently proposed contextual
character-based word representation. Further-
more, we examine two different pre-processing
approaches to efficiently capture and represent the
information from misspelled words.

1. Introduction
Automated Essay Scoring deals with the challenge of re-
ducing the costly and time consuming effort of manually
scoring students’ assignments. This is a particularly relevant
social problem for several reasons. First, essays better cap-
ture students’ capabilities than multiple choice tests, which
are nevertheless normally preferred for convenience. Sec-
ond, a unified and automatic scoring tool would guarantee
fair scoring and consistency. Third, such a tool would save
both time and money that could be reinvested in education.

The Hewlett Foundation addressed the problem by issu-
ing a $ 100, 000 prize Kaggle competition1 in 2012, be-
fore the wave of interest towards Deep Learning techniques.
The considered approaches for automated scoring, such as
ranking and regression, have already produced human-like
performances, but with the downside of time-consuming
handcrafting of features. Given the complexity of the task,
these features would ideally encode properties such as types
of syntactic constructions, clarity of grammatical relations,
and refinement of the vocabulary. Ideally, learning meaning-
ful score-specific word embeddings might reduce the effort
required.

Our goals in this project are the following:

1https://www.kaggle.com/c/asap-aes/leaderboard

• Replicate state of the art results on the ASAP dataset,
with the approach proposed in (Alikaniotis et al., 2016)
that makes use of Score-Specific Word Embeddings
(SSWE).

• Compare different approaches to embed misspelled
words in essays, namely replacing with the correct
word and prefixing with a specific symbol and inserting
a token specific for misspellings.

• Investigate the effectiveness of new word embedding
techniques, namely ELMo (Peters et al., 2018) for the
task of automated essay scoring.

1.1. Related Work

Given the importance of the task, many solutions have been
proposed to address this problem. Some early approaches
are: logistic regression over hand-crafted features, latent
semantic analysis, sentence level score prediction, naive
Bayes (using different distributions to model the data), vot-
ing algorithms, learning to rank. More recently, success-
ful approaches rely more consistently on the use of Deep
Learning. Long Short-Term Memory networks (LSTMs)
(Hochreiter & Schmidhuber, 1997) are particularly useful
for Natural Language Processing due to their ability to ex-
ploit long term dependencies between words and hence
encode information about the grammatical structure of the
text. Bi-directional LSTMs (Graves, 2011) extend the ap-
proach by processing the text both forwards and backwards.
The current state of the art is achieved in (Alikaniotis et al.,
2016), by combining LSTMs and task-specific word embed-
dings that encode both semantic meaning of words and extra
information on which the essay score depend. A different
approach to embeddings was proposed in (Cozma et al.,
2018), where pre-trained word embeddings are clustered
and used to generate a super word embeddings, that are
consequently used to produce a document representation
used for score prediction. Another approach that makes use
of LSTMs is (Tay et al., 2017), where the model also learns
the relationships between hidden states of the network and
uses them as additional features for prediction.

https://www.kaggle.com/c/asap-aes/leaderboard
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2. Dataset and Methodology
In the following section we describe the pre-processing pro-
cedure, the models choices and the performed experiments.

2.0.1. DATASET

The dataset we used is the training data originally published
by the Hewlett foundation for the 2012 Kaggle competi-
tion. The aggregated essay collection is referred to as the
Automatic Student Assessment Prize (ASAP) Automated
Essay Scoring (AES) dataset. It contains eight different
essays categories (different prompts for each) for a total
of 12,976 essays. Each essay is scored by two raters on a
varying score scale (depending on the prompt). However, if
the two raters disagree on the grade by a significant amount,
then a third rater is brought in to evaluate the essay and the
final grade assigned is that of the third rater. The final score
either is computed from the first two raters (usually average
or sum) or is the score given by the third grader, if there
is one. Unfortunately, the ground truth for the original test
dataset was not released by the organizer of the competition.
Thus, we use the train, validation, and test splits as proposed
in the paper Automatic Text Scoring Using Neural Networks
(Alikaniotis et al., 2016) to separate the data-sets so as to be
able to compare our results.

Finally, in order to ease the training, we normalize the scores
to be in the interval [0, 1] during training and de-normalize
them for evaluation. Since essay sets have very different
ranges of scores (for instance one has a range of [0, 4] while
another has scores in [0, 60]), normalizing the scores with
respect to their range should make the task easier than di-
rectly predicting the final score. The ids of the essay sets
are also provided with the essays also in the test set of the
original competition, therefore we to use this information
in our models in order to normalize and denormalize in the
appropriate range. Note, however, that (Alikaniotis et al.,
2016) did not perform this normalization.

2.0.2. MISSPELLED WORDS

One of the domain specific problems of Automated Essay
Scoring is misspelled words. Given the education level of
who wrote the essays (middle school), mistakes are rather
frequent in our dataset. This can be a problem when training
a model, since it becomes harder to represent misspelled
words with embeddings that contain both the semantic in-
formation about the correct word and the score-specific
information about the spelling mistake. Moreover, any word
can be misspelled in a number of ways. This raises other
issues, for instance whether each misspelling of the same
word should have a different embedding, or whether there
is ambiguity between two possible correct words for a mis-
spelled one. There might also be difficulties during the
training due to the low frequency of that specific typo in the

dataset.

To address these issues, in this project we propose two ap-
proaches. In both cases, during the data pre-processing,
typos are identified and corrected through the SymSpell
library2. To do this, for each misspelled word we con-
sider the closest one among a dataset of 227,627 English
words according to the editing distance. If the editing dis-
tance is larger than 2, the proposed correction is unlikely
to be accurate. In this case we substitute the word with
an unrecognizable token. We propose, however, two
different ways to correct recognized misspelled words in
our pre-processing:

• The word is replaced by the correctly spelled word,
but an underscore symbol is prefixed. In this way, all
typos of the same word are mapped to the same token
and, so, the same embedding which will nevertheless
differ from the one of the correct word. This allows for
weighting differently the spelling mistakes in different
words. This is referred as Local in the results section.

• The word is replaced with its correct version and the
token misspelled is inserted after the word. Ideally,
a LSTM network would be able to learn the relation-
ship between the presence of this token and the overall
score for the essay. However, this approach loses in
generality as every misspelling in every word is treated
in the same way. This is referred as Global in the
results section.

2.1. Methodology

We perform a number of experiments to compare different
models based on the evaluation metrics defined in 2.1.5.3

2.1.1. BASELINE

The baseline we choose to compare against is an SVM
model trained on per-document features (as in (Alikaniotis
et al., 2016)). These features were extracted according to
the method discussed in (Le & Mikolov, 2014). We refer to
this as the doc2vec model. In our experiments we use the
Gensim4 implementation of doc2vec. For the baselines
we did not normalize the target scores, as in (Alikaniotis
et al., 2016).

2.1.2. SCORE-SPECIFIC WORD EMBEDDINGS

The main contribution of (Alikaniotis et al., 2016) is
the introduction of Score-Specific Word embeddings
(SSWE). Their approach builds on the skip gram model

2https://github.com/mammothb/symspellpy
3Code is available at https://github.com/LindaPetrini/DL4NLT
4https://radimrehurek.com/gensim/

https://github.com/mammothb/symspellpy
https://github.com/LindaPetrini/DL4NLT
https://radimrehurek.com/gensim/
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for word2vec (Mikolov et al., 2013). Each word is asso-
ciated to a vector (embedding) that represents its semantic
meaning and the embeddings are trained by means of a
neural network whose target is to rank a word sequence
(more precisely, a 9-gram extracted from an essay) with
respect to a number of noisy copies, where the central word
has been changed. Moreover, this procedure was extended
in SSWE by adding a new term in the loss function, that
directly accounts for the score prediction.

In short, a new linear layer is introduced as a new head
of the network used to train the word embeddings. This
last output layer is trained to predict the score of the essay.
The final loss is then taken to be a (weighted) sum of the
loss coming from the skip gram procedure and the MSE
between the predicted and real score. The intuition behind
this choice is to make the embeddings more informative with
respect to this specific task. As an example, very common
words such as and, but, is would not benefit from this added
specification, as they appear uniformly among differently
scored essays. On the other side, we could expect words
with similar semantic meaning and different refinement of
vocabulary to be pulled further away by the added loss
term. This is because, even if their semantic meaning is the
same, their contribution to characterize good or bad essays
is different.

2.1.3. LSTM/BLSTM

For all the other experiments, we consider LSTM models
with different types of word embeddings. For each type of
embedding, we experiment with both a uni-directional and
a bi-directional LSTM. The latter model was introduced to
address the fact that the interpretation of a word at a given
timestep t might change once the model also observes a
following word that might appear some timesteps later. We
experiment with one and two layers networks. On the top
of the recurrent network we put a linear layer performing
a linear regression on the score (as done in (Alikaniotis
et al., 2016)). We believe a linear regression in the output is
more reasonable than a logistic regression, since a sigmoid
function is likely to suppress more information on the ex-
treme values. The hyper-parameters we choose to tune in
our experiments are: size of the embedding, size and number
of hidden layers in LSTMs, dropout, batch size and learn-
ing rate. In these experiments we compare embeddings
trained from scratch against SSWE embeddings for the two
different training procedures.

2.1.4. ELMO EMBEDDINGS + GRU

One issue with the SSWE approach is that unseen words are
not mapped to any meaningful embeddings. An alternative
approach to build word embeddings that can be extended
to unseen words is proposed in (Peters et al., 2018). The

intuitive idea behind ELMo embeddings can be understood
comparing it to how stacked CNNs process data in a hier-
archical manner (identifying lower level features of images
in early layers, and more complex shapes in the last layers).
This intuition suggests that, in the context of an LSTM with
multiple layers, the activations at various layers carry mean-
ingful information about the semantic meaning at lower
levels and about the sentence structure at higher levels. The
authors suggest to train a Bidirectional-LSTM with L layers
using a task-specific objective and afterwards define the
concatenation of the input and both the backward and for-
ward activations for all layers in the LSTM as embeddings
(for any other downstream task). In our experiments, we
use a pre-trained model5 to extract embeddings, which are
subsequently fed to a bidirectional Gated Recurrent Unit
networks (GRU) model.

The training procedure for ELMo results in high dimen-
sional embeddings (1024 in the case of the pre-trained em-
beddings). In order to address the memory issues that arise
from this fact, we decided to include a linear projection to
a lower dimensional space of 256 as first layer. In addi-
tion, instead of LSTM networks, experiments with ELMo
embeddings were performed with GRU (Cho et al., 2014).
This type of network behaves similarly to a LSTM network,
with the difference that the output gate is not present and
hence GRU networks have less parameters. To ensure a
fair comparison with SSWE, experiments were run with
the same GRU architecture and SSWE embeddings/ELMo
embeddings.

2.1.5. EVALUATION METRICS

We evaluate our approaches based on the following met-
rics: Spearman’s ρ, Pearson’s r, Cohen’s κ and Root Mean
Square Error (RMSE).

The Cohen’s κ coefficient with quadratic weights is the met-
ric used in the original Kaggle competition to evaluate the
winning algorithm on the unseen test data and it expresses
a measure of the agreement between two raters on a clas-
sification task. The Spearman’s ρ measures relationships
in the rankings of two different variables. In the case of
the AES dataset, this measures the agreeability between the
predicted and the actual scores (i.e. the rankings) of the in-
dividual essays. Similar to Spearman’s ranking coefficient,
the Pearson r is a measure of linear correlation between two
variables, without incorporating rankings. Measuring the
performance of various techniques on the AES dataset with
these metrics allows for a robust way to validate our result,
given the complexity of a correct evaluation for this task.

Finally, we have used RMSE as our main measure. As sug-
gested by (Alikaniotis et al., 2016), this measure, associated

5https://github.com/allenai/allennlp

https://github.com/allenai/allennlp
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model Cohen’s κ Spearman’s ρ Pearson r RMSE (Normalized) RMSE
Global

doc2vec + SVM 0.808 0.820 0.887 —– 4.246
LSTM 0.967 0.903 0.968 0.194 2.229
BLSTM 0.971 0.926 0.971 0.165 2.095
LSTM + SSWE 0.968 0.909 0.968 0.186 2.171
BLSTM + SSWE 0.969 0.913 0.969 0.182 2.136

Local
doc2vec + SVM 0.814 0.825 0.886 —– 4.205
LSTM 0.968 0.920 0.968 0.174 2.183
BLSTM 0.969 0.922 0.970 0.173 2.213
LSTM + SSWE 0.968 0.922 0.968 0.174 2.186
BLSTM + SSWE 0.969 0.922 0.969 0.170 2.171
GRU + SSWE 0.962 0.904 0.965 0.192 2.301
(Alikaniotis et al., 2016) 0.96 0.91 0.96 —– 2.4
GRU + ELMo 0.974 0.942 0.981 0.147 1.855

Table 1. Results on the test set according to different evaluation metrics.

with the correlations described above, is a better choice than
Cohen’s κ. This metric considers each score as an indepen-
dent category and does not take neither the ordering of the
scores nor the magnitude of their differences into account.

In our results we have considered both the RMSE computed
on the de-normalized targets and on the normalized targets.
The first one is provided for comparison with other results,
but we believe the second one is a more reasonable choice.
Since different essay-sets have different scales, errors on
essays with a wider range of scores will bias the RMSE
computed on the de-normalized targets towards them. Con-
versely, if the measure is computed on the normalized scores,
each essay contributes equally to the result.

For this reason, we employed the RMSE on the normal-
ized targets as our main measure and we used it for early-
stopping during the training of our models.

3. Results and Discussion
We first performed a grid search on our LSTM and BLSTM
models to determine the best hyper-parameters after 25
epochs. The hyper-parameters tested were: learning rate,
number of layers, number of hidden units, dropout and
types of embeddings. Adam is used as the chosen optimizer
throughout our experiments because of its general success
in similar tasks and affiliation to UVA. We found the lowest
loss on the validation set for both the LSTM and BLSTM
models using a learning rate of 1e− 4, a single layer of 128
units and a dropout of 0.4. For the rest of our experiments
we fix these hyper-parameters in order to control the effects
of the different approaches.

The ELMo GRU network was constrained to a single set of
hyperparameters due to computational constraints. As men-

tioned in Section 2.1.4, the pre-trained ELMo embeddings
of size 1024 were projected to a size of 256 using a linear
layer, due to memory constraints with the large sequence
lengths of the individual essays. The GRU network was
trained using a learning rate of 3e− 4 (using Adam), with a
single bidirectional GRU layer with a hidden dimension of
100 units.

In Table 1 we report the performance of the different models
on the test set according to the evaluation metrics described
previously. We distinguish between the normalized RMSE
and original RMSE. The former is used as training loss for
our model, and it is computed on the targets and predictions
normalized between 0 and 1. The latter RMSE is computed
on the original grades (which have different ranges in dif-
ferent essay sets), and it is used to compare our model with
the previous state of the art results (shown at the bottom of
Table 1) which used a two layer BLSTM and their custom
SSWE (Alikaniotis et al., 2016).

We notice how the ELMo + GRU model was the best model
according to all of the metrics. This is most likely due to the
semantic and contextual information contained within the
ELMo embeddings and their high dimensionality (which
enable them to encompass more information). Moreover,
the ELMo embedding of a word is built from a character-
level language model, which means that this approach can
automatically deal with misspelled words. Also, when it is
compared with the performance of the GRU model using
SSWE as well as the LSTM or BLSTM models using SSWE,
we can attribute most of gains to the ELMo embeddings
layer. Regarding the SSWE and the randomly-initialized
embeddings, their lower dimensionality and the smaller
hyper-parameter tuning we could perform may have also
contributed to poorer performance.
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Regarding the two ways of pre-processing misspelled words,
we predict to see two different ways in which they affect the
behavior of our models. On one hand, the general misspelled
token is more likely to converge to the expected negative
value when influencing the final essay score. This is because
having a unique token for spelling mistakes would result in it
being very frequent in the dataset and, probably, a good indi-
cator of the total number of errors in each essay. On the other
hand, a unified misspelling token would lose the semantic
information about which word was misspelled. This infor-
mation, captured when using the local misspelling token
instead, can be used for example to discriminate between
errors in common words (which could be good indicators
of low grades) and the ones in infrequent words (possibly
less relevant). Considering our results, we notice how the
global misspelled token corresponds to mostly better scores
for some of our models. This is most likely due to the fact
that our models struggle to accurately learn different embed-
dings for the misspelled version of every word. Conversely,
the unified misspelling token is both more informative and
easier to learn thanks to its frequency in the training set.

3.1. Visualizing Distance between Embeddings

good good bad bad
good 1 - - -
good -0.029 1 - -

bad +0.034 -0.021 1 -
bad -0.145 +0.029 -0.046 1

Table 2. Cosine distance between embeddings using local mis-
spelled token.

As discussed in Sec. 2.1.2, SSWE learned for our task are
able to capture both a semantic and a score-specific informa-
tion for words in the essays. In particular, we expect that part
of the latent representation is responsible for describing the
contribution of the word towards the grade (which depends
on features like correct spelling and lexical level). The other
part of the representation depends on the semantic meaning
of the words itself, as in classic versions of embeddings. To
better understand the difference and similarities between
words, we can compute their cosine distance. For example,
we expect a certain degree of similarity between two words
that are semantically similar but also between ones that are
both correct or both wrong. On the other way, we should
find a higher distance (negative cosine similarity), between
words with opposite meaning and where one is correct and
one is misspelled. In table 2 we report the cosine similarity
between some words in our vocabulary and we notice how
the scores are in line with our observations about the em-
beddings. Notice how pairs of words matching in ”spelling
correctness” (like good - bad and good - bad) have a posi-
tive cosine similarity. On the other side, when words don’t

match neither in correctness nor in semantics (for example
in good - bad) the similarity is negative. Overall, as we
motivated in the previous paragraph, representations with
local misspelling tokens are not as stable and accurate as
commonly adopted embeddings like word2vec or Glove.
This is mostly due to the rarity of misspelled words in the
training set, and the global misspelled token was designed
to solve this issue.

4. Conclusion and Future Work
We have successfully replicated state of the art results from
(Alikaniotis et al., 2016) using the SSWE embeddings and
evaluated using different approaches to pre-processing and
word embeddings. We are able to beat its best results by
using the new ELMo embeddings, obtaining a final RMSE
of 1.855. Even though the other metrics did not improve
by significant amounts, we maintain that the RMSE is a
better score by which to measure our model. It is possible,
however, that the ELMo embeddings could have performed
even better, had we unfrozen the embedding layer so as to
fine tune it on our dataset or even had the time to explore the
hyper-parameter space. We were unable to do so due to com-
puting and time constraints and so future works could still
consider this approach if additional resources are available.

Another possible line for future work would be the explain-
ability of the model prediction. (Alikaniotis et al., 2016)
propose a visualization tool that highlights which words
had the most influence in the score decision, even though
they also point out that their approach is based on gradi-
ents, that are calculated at the end of the sentence and are
hence unable to distinguish between multiple appearances
of a particular word. Such explainability would be useful in
preventing and detecting adversarial inputs or essays which
purposefully try to fool an automatic scorer such as the one
proposed here.

Finally throughout this experiment we were able to use
normalization and denormalization on the essay ranges be-
cause the essay set was given to us. If our model however
came across an essay set not given in the training dataset,
it would probably not be as effective. Future works could
consider approaching the problem of prompt agnostic essay
scoring, where regardless of the essay set or prompt the
work is judged based on the level of writing. This hopefully
offers a more robust approach for real world applications
and remains a possible question for future works.
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